FFmpeg Cours d'approfondissement

Reto Kromer, Eléonore Bernard et Kamilla Ødegård AV Preservation by reto.ch et Ødegård & Bernard Restaurierung Berne, le 14 mars 2025

Déroulement du cours

- Objectifs du cours
- Présentation des problèmes/questions apportées
- Rappel rapide des notions de base de FFmpeg
- Input sur le flux de travail, le contrôle qualité et la préservation

2

- Travail de groupe
- Présenter les résultats et les conclusions
- Utiliser FFmpeg dans d'autres applications
- Discussion finale

1

Objectifs du cours

- Appliquer FFmpeg pour différentes conversions de sons et d'images
- Utiliser les ressources et les outils relatifs à FFmpeg
- Trouver les commandes appropriées
- Appliquer FFmpeg et d'autres programmes pour l'extraction et l'interprétation de métadonnées
- Options de contrôle de qualité
- Utilisation des commandes FFmpeg pour le traitement par lots

Link zum FFmpeg-Aufbaukurs (D) https://reto.ch/training/2025/2025-03-13/ Lien vers le cours avancé de FFmpeg (F) https://reto.ch/training/2025/2025-03-14/

Exemples d'application

Berne, le 14 mars 2025

5

Exemples

- « Ripper » des fichiers à partir de DVD et les convertir en copies de visualisation
- Conversion d'images DPX en flux d'images Matroska/FFV1
- Conversion d'images DPX individuelles à l'aide de RAWcooked
- Conversion de fichiers non-compressé/master en copie de visualisation H.264

6

- Convertir ProRes en copie de visualisation H.264
- Ajouter un filigrane, un timecode, un logo ou un générique

Structure des fichiers

- conteneur multimédia (wrapper)
- codec audio
- données audio
- codec vidéo
- données vidéo

Berne, le 14 mars 2025

Rappel

9

Structure des commandes FFmpeg

\$1 \${n} **\$0** command argument 1 ... argument n

Syntaxe des arguments :

-parameter -parameter value -p -p value

Syntaxe FFmpeg

ffmpeg

[global options] [input options n] -i input file n [output options n] output file n

ffprobe [input options] input file

ffplay [input options] input file

Ressources, chercher de l'aide

FFmpeg Cookbook for Archivists → avpres.net/FFmpeg/

ffmprovisr → amiaopensource.github.io/ffmprovisr/

ffmpeg -h ffmpeg -codecs

Input sur le flux de travail

Berne, le 14 mars 2025

13

Flux de travail possible

- Définir les formats de fichiers acceptés
- Contrôler la qualité des fichiers
- Créer des dérivés (par ex. copie de visualisation)
- Créer des paquets d'archives
- Sauvegarde dans une solution d'archivage numérique (par ex. bandes magnétiques LTO, serveur d'archive, etc.)

Input sur le contrôle de la qualité

14

Berne, le 14 mars 2025

Cas pratique

Couper le fichier

- MKV/FFV1 converti en MP4/H.264
- MP4 coupé avec la commande suivante :
- → ffmpeg -i inputfile.mp4 -ss hh:mm:ss -to hh:mm:ss -c:v copy -c:a copy outputfile.mp4
- Contrôle de qualité par visionnement dans VLC/QuickTime/Gridplayer
- → La vidéo est lue/interprétée différemment
- La même commande fonctionne bien pour un fichier MKV/FFV1

Cas pratique

Couper le fichier

- Contrôle de qualité dans VLC/QuickTime/Gridplayer
- → La vidéo est lue/interprétée différemment
- Explication : les différents programmes interprètent la compression différemment La synchronisation audio/vidéo n'est donc pas assurée.
- Solution : Préciser la commande
- → ffmpeg -accurate_seek -i inputfile.mp4 -ss hh:mm:ss -to hh:mm:ss -c:v libx264 -preset veryslow -crf 18 -pix_fmt yuv420p -c:a aac outputfile.mp4

17

Contrôle de qualité

Proposition de flux de travail

- Noms de dossiers/fichiers et structure
- Sommes de contrôle, intégrité des données
- Vérifier les métadonnées techniques
 - Format de fichier : conteneur, codec, sous-titres, timecode, etc.
- Analyser les signaux
- Visualiser et/ou écouter le fichier
 - Contenu de l'image et du son

Sommes de contrôle

Outils de création de somme de contrôle MD5

- MD5 (CLI, Mac)
- Checksum+ (GUI, Mac)
- MD5Checker (Windows) http://getmd5checker.com/

Sommes de contrôle

Commandes

- MD5
- → Mac: md5 input_file
- → Windows: certutil -hashfile input_file MD5
- → md5sum
- SHA
- → shasum /sha1sum / sha256sum / sha512sum
- Framemd5

→ffmpeg -i input_file -f framemd5 output_file_framemd5.txt

Commande pour comparer des fichiers

- Sur Linux/Mac/Windows Terminal ou WSL
- → **diff -s** file01.txt file02.txt > file diff.txt

• Sur Windows

→ fc file01.txt file02.txt > file_diff.txt

Peut par exemple être utilisé pour comparer des fichiers MediaInfo.txt ou Framemd5.txt

Programmes d'analyse

Analyse des métadonnées

FFprobe (CLI)

• MediaInfo (GUI, CLI)

Analyse des signaux

- QCTools (GUI)
- qcli (CLI)
- SignalServer (Web App)

Allgemein	
Vollstandiger Name	: skifahren_1999.mov
Format	: MPEG-4
Format-Profil	: Quicklime
Codec-ID	: qt 0000.02 (qt)
Dateigröße	: 2,37 G1B
Dauer	: 1 min 31s
Gesamte Bitrate	: 223 Mb/s
Bildwiederholungsrate	: 25,000 FPS
Kodierendes Programm	: Lavf61.7.100
Video	
ID	: 1
Format	: YUV
Codec-ID	: v210
Codec-ID/Hinweis	: AJA Video Systems Xena
Dauer	: 1 min 31s
Bitraten-Modus	: konstant
Bitrate	: 221 Mb/s
Breite	: 720 Pixel
Clean aperture width	: 703 Pixel
Höhe	: 576 Pixel
Clean aperture height	: 576 Pixel
Bildseitenverhältnis	: 4:3
Clean aperture display aspect ratio	: 4:3
Modus der Bildwiederholungsrate	: konstant
Bildwiederholungsrate	: 25,000 EPS
Standard	: PAI
Color space	- YUV
Chroma subsampling	: 4:2:2
Bit depth	: 10 bits
Scantyn	: Interlaced
Scan type store method	· Interleaved fields
Scarreihenfolge	: oberes Feld zuerst
Compression mode	: Lossless
Rits/(Pixel*Frame)	- 21, 333
Stream_Gräße	- 2 34 CiB (00%)
Sprache	· Englisch
Color primaries	- BT 601 DAI
Transfer characteristics	- BT 780
Matrix coefficients	. DT 601
HUCLES COEFFICIENCS	
Audio	
10	: 4

25

Contrôle de qualité avec FFprobe et MediaInfo

26

Commandes

• FFprobe (CLI)

→ ffprobe -show_format -show_streams -print_format json
input_file > input_file.txt

- MediaInfo (CLI)
- → mediainfo file.ext
- → mediainfo file.ext
- → mediainfo --Details=1 file.ext
- → mediainfo --Output=JSON file.ext

Programmes de visualisation de fichiers AV

Lecteurs de média AV basé sur FFmpeg

- FFplay (CLI)
- → <u>ffmpeg.org</u>
- MPV (GUI, CLI)
- → <u>mpv.io</u>
- VLC (GUI)
- → www.videolan.org/vlc
- Gridplayer (GUI)
- → <u>https://github.com/vzhd1701/gridplayer</u>

29

Commandes pour l'analyse de fichiers AV

Commandes

• Écran divisé (https://avpres.net/FFmpeg/split.html)

→ ffmpeg -i input_file_1 -i input_file_2 -filter_complex "[0] crop=iw/2:ih:0:0 [left]; [1] crop=iw/2:ih:iw/2:0 [right]; [left][right] hstack [out]" -map "[out]" output file

Différentiel de deux fichiers (<u>https://avpres.net/FFmpeg/delta.html</u>)
 > ffmpeg -i input_file_1 -i input_file_2 -filter_complex "[1] format=yuva444p, lut=c3=128, negate [1_with_alpha]; [0] [1 with alpha] overlay [out]" -map "[out]" output file

30

Input sur la conservation et les formats de fichiers

Berne, le 14 mars 2025

Conservation

Eléments analogiques

- Numériser avec la meilleure qualité possible
- Continuer à préserver l'élément analogique
- La profondeur de bits est plus importante que la définition

Éléments numériques

- Conserver autant que possible le format natif
- Ne pas convertir dans un format « supérieur »
- Le ProRes natif est adapté à l'archivage

33

Formats d'archives d'images individuelles

• Dossier, TIFF, 2K/4K, RGB, 4:4:4:4, 16 bit

• MXF (OP 1a), DPX, 2K/4K, R'G'B', 4:4:4:4, 12/10 bit

• MKV, FFV1, 2K/4K, R'G'B', 4:4:4:4, 12/10 bit

34

Formats d'archives de flux d'images

• MKV, non-compressé, SD/HD, Y'C_BC_R 4:2:2, 10 bit

• MKV, FFV1, SD/HD, Y'CBCR 4:2:2, 10 bit

Formats d'archives de télévision numérique

Productions SD • MXF (OP 1a), MPEG IMX, PAL, 50 Mbit/s

Productions HDMXF (OP 1a), XDCAM HD 422, PAL, 50 Mbit/s

D'autres formats de bandes numériques doivent également être lus dans le codec natif (par ex. Digital Betacam, DV, etc.)

Travail de groupe

Berne, le 14 mars 2025

Exemples

- « Ripper » des fichiers à partir de DVD et les convertir en copies de visualisation
- Conversion d'images DPX en flux d'images Matroska/FFV1
- Conversion d'images DPX individuelles à l'aide de RAWcooked
- Conversion de fichiers non-compressé/master en copie de visualisation H.264

38

Autres commandes à tester

- Convertir ProRes en copie de visualisation H.264
- Ajouter un filigrane, un timecode, un logo ou un générique

37

Travail de groupe

- Choisir et définir la question et l'objectif de l'exercice
- Rechercher, rassembler et tester les commandes
- Contrôler la qualité des résultats

Thèmes

• Sujet que vous avez apporté vous-même

• DVD

- Convertir DPX en MKV
- Convertir de la vidéo SD noncompressée, 422, entralacée en copie de visualisation
- Conversion de ProRes en copie de visualisation

Ressources

FFmpeg Cookbook for Archivists → avpres.net/FFmpeg/

ffmprovisr

→ amiaopensource.github.io/ ffmprovisr/

Afficher la liste de paramètres existants

ffmpeg -h
ffmpeg -codecs
ffmpeg -decoders
ffmpeg -h decoder=flac
ffmpeg -encoders
ffmpeg -h encoder=ffv1
ffmpeg -filters
ffmpeg -formats
ffmpeg -layouts
ffmpeg -layouts
ffmpeg -pix_fmts
ffmpeg -bsfs

Input sur les DVD / supports de données optiques

• Que sont les supports de données optiques ?

- CD (CD-DA, CD-ROM, CD-R, CD-RW)
- DVD (DVD-Video, DVD-Audio, DVD-ROM, DVD+R, DVD-R, DVD+RW, DVD-RW..)
- Laserdisc, WORM, Blu-ray, M-Disc, MiniDisc etc.
- L'identification est importante pour pouvoir choisir le bon flux de travail pour la sauvegarde

Input sur les DVD / supports de données optiques

- Analyse d'un support de données optique
 - S'agit-il d'un DVD vidéo ? Quelle est la structure des données ?
 - Analyse de métadonnées à l'aide de programmes
- Ripper et/ou imager le contenu d'un DVD ?

d'auteurs ?

de fichiers

VOB

commercial

• Image de disque (archiver les contenus AV, y compris la structure du disque)

42

• Extraire les fichiers AV et, si nécessaire, les réencoder dans un fichier unique

41

🗯 Finder Ablage Bearbeiten Darstellung Gehe zu Fenster Hilfe DVD vidéo -**Structure** ... < > VIDEO_TS DVD commerciaux AUDIO_TS VIDEO_TS.BUI Peuvent être protégés AirDrop JACKET_P VIDEO_TS.IFO Gestion des droits Zuletzt benutzt VIDEO_TS VIDEO_TS.VOE VTS_01_0.BUP A Programme VTS_01_0.IFO Schreibtisch Contiennent le même type VTS_01_0.VOE Dokumente VTS_01_1.VOB Downloads VTS_01_2.VOE VTS_01_3.VOE E Filme Les contenus AV sont VTS_01_4.VOE 🔄 Bilder VTS_01_5.VOE divisés en plusieurs fichiers VTS_02_0.BUI Orte VTS_02_0.IFO iCloud Drive VTS_02_1.VOB MacBook Air von Ka. VTS 03 0.BU O DVD_VIDEO → ■ VIDEO_TS Illustration : Structure des données d'un DVD DVD_VIDEO OneDrive 44 Obje

Exercise : Transcoder des fichiers DVD

- Extraire des fichiers AV et les transcoder en un fichier unique
 - Quels sont les fichiers à prendre en compte pour le transcodage ?
 - Comment créer un fichier vidéo à partir de plusieurs fichiers ?
 - Comment convertir correctement les fichiers en MP4/H.264 ?

Commandes : DVD

- Convertir le contenu AV d'un DVD en fichier MP4
- → ffmpeg -i "concat:VTS_01_1.VOB|VTS_01_2.VOB| VTS_01_3.VOB" -b:v 1500k -r 30 -vcodec h264 -strict -2 -acodec aac -ar 44100 -f mp4 output file.mp4
- > ffmpeg -i "concat:input_file_1|input_file_2|
 input_file_3" -c:v libx264 -c:a aac output_file.mp4
- → prendre en compte tous les canaux audio et vidéo : ffmpeg -i "concat:input_file_1|input_file_2" -map 0:v -map 0:a -c:v libx264 -c:a aac output_file.mp4

45

46

Commandes : DVD

• Convertir le contenu AV d'un DVD en fichier MP4

→ désentrelacer :

ffmpeg -i "concat:VTS_02_1.VOB|VTS_03_1.VOB|
VTS_04_1.VOB" -filter:v "idet, bwdif" -c:v libx264
-c:a aac output H264.mp4

→ désentrelacer et mise à l'échelle en HD :

ffmpeg -i "concat:VTS_01_1.VOB|VTS_01_2.VOB|
VTS_01_3.VOB" -filter:v "idet, bwdif,

scale=1440:1080:flags=lanczos, pad=1920:1080:240:0"
-c:v libx264 -c:a aac output H264.mp4

Input sur les fichiers DPX

- Les fichiers DPX (Digital Picture Exchange) sont générés par des caméras ou des scanners haut de gamme lors de la prise de vue ou de la numérisation
- Que contient un DPX ?
 - Encodage log-négatif
 - Codage log RGB ou codage semi-log
 - Codage gamma ou codage par fonction de puissance
 - Codage linéaire de scène

Exercise : Fichiers DPX

- Convertir des images individuelles DPX en fichier vidéo (MKV)
- Fichiers d'exercice (images individuelles) :
 - DPX_10-bit/Test_000nnnnn.dpx oder DPX_12-bit/ Test_000nnnnn.dpx
 - Source : Scène de film 16 mm, générée dans DaVinci Resolve
- Fichiers d'exercice (flux d'images) :
 - Test_DNxHR_444_12-bit.mxf

Commandes : Fichiers DPX

• Commandes FFmpeg :

```
→ Pour images individuelles: ffmpeg -f image2 -framerate 24
-i input_file_%08d.dpx -c:v ffv1 -level 3 -threads 8
-coder 1 -context 1 -g 1 -slices 24 -slicecrc 1
-start_number 00086400 -c:a copy output_file.mkv
```

```
→ Pour flux d'images: ffmpeg -i input_file.mxf -c:v ffv1
-level 3 -threads 8 -coder 1 -context 1 -g 1 -slices
24 -slicecrc 1 -c:a copy output_file.mkv
```

DPX - RAWcooked

- RAWcooked permet d'encoder des DPX en Matroska avec FFV1/ FI AC
- Possibilité d'intégrer des métadonnées dans un fichier sidecar avec RAWcooked
- RAWcooked : https://mediaarea.net/RAWcooked

53

Input sur ProRes

- Les fichiers ProRes sont générés par de nombreuses caméras et présentent alors la meilleure qualité possible de ce contenu
- De la même facon, si les fichiers traités numériquement (FinalCut, Adobe Premiere, DaVinci Resolve) sont exportés en ProRes, alors il s'agit de la meilleure qualité possible de ce contenu
- Les codecs ProRes peuvent se trouver dans les conteneurs MOV, MXF ou MKV Container.
- Que faut-il prendre en compte ?

54

Input sur ProRes

La famille ProRes-422

- ProRes 422 HQ (high quality)
- ProRes 422 (standard)
- ProRes 422 LT (light)
- ProRes Proxy

La famille ProRes-4444

- ProRes 4444 XQ
- ProRes 4444

La famille ProRes-RAW

- ProRes RAW HQ
- ProRes RAW

Commandes : Transcoder un fichier ProRes en une copie de visualisation

- Exemple : fichier ProRes apporté par vous-même
- Analyser les métadonnées du fichier avant le transcodage

• Commande FFmpeg :

- → ffmpeg -i inputfile.mov -pix fmt yuv420p -c:v libx264 -preset veryslow -crf 30 -movflags +faststart+write colr outputfile ProRes H264.mp4
- Source : https://avpres.net/FFmpeg/im H264.html

Exercise : Transcoder un fichier noncompressé en copie de visualisation

- Exemple 1 : skifahren_99.mov
 - Source : cassette Video8 numérisée
 - Format : MOV/V210; non-compressé, YUV, 4:2:2, entrelacé, PAL, 10 bit
- Que faut-il prendre en compte ?
 - Entrelacé vers progressif / désentrelacement souhaité ?
 - Conserver le 4:3 ou transcoder en 16:9 ?

Commandes : Transcoder un fichier noncompressé en copie de visualisation

Exemple 1 : non-compressé, V210, 4:2:2, entrelacé, PAL, 10 bit

• Commandes FFmpeg :

→ ffmpeg -i input_file.MOV -c:v libx264 -preset veryslow -crf 18 -pix_fmt yuv420p -c:a aac output_file.MP4

→ désentrelacement: ffmpeg -i input_file -c:v libx264 -pix_fmt yuv420p -filter:v "idet, bwdif" output_file

→ 4:3 vers 16:9 avec pillarbox: ffmpeg -i input_file -c:v libx264 -filter:v "yadif, scale=1440:1080:flags=lanczos, pad=1920:1080: (ow-iw)/2: (oh-ih)/2, format=yuv420p" output_file

57

58

Autres possibilités avec FFmpeg

- Changer le mode de balayage désentrelacer (entrelacé vers progressif)
- Couper le fichier (voir cas d'étude)
- Modifier l'espace colorimétrique (quand cela serait-il utile ?)
- Insérer un filigrane / générique de début ou fin / logo / timecode

Changer le mode de balayage

→ désentrelacement ffmpeg -i input_file -c:v libx264
-pix_fmt yuv420p -filter:v "idet, bwdif" output_file

→ désentrelacement ffmpeg -i input_file -c:v libx264 -vf "yadif,format=yuv420p" output_file

Quelles différences peut-on constater ?

Input - Changer l'espace colorimétrique

- Modifier la matrice des couleurs
- Quand faut-il modifier la matrice de couleurs ?
- Comment reconnaître la matrice de couleurs actuelle dans les métadonnées ?

Modifier les espaces colorimétriques Quand faut-il modifier les espaces colorimétriques ?

Commandes : Changer l'espace colorimétrique

• Modifier la matrice des couleurs :

→ ffmpeg -i input_file -c:v libx264 -vf colormatrix=src:dst
output file

→ Exemple Rec. 601 vers Rec. 709 : ffmpeg -i input_file -c:v libx264
-vf colormatrix=bt601:bt709 output_file

Espace colorimétrique pour PAL :

→ ffmpeg -i input_file -c:v libx264 -color_primaries bt470bg -color_trc bt709 -colorspace bt470bg output_file

Espace colorimétrique pour NTSC :

→ ffmpeg -i input_file -c:v libx264 -color_primaries smpte170m -color trc bt709 -colorspace smpte170m output file

62

61

Modifier les propriétés d'un fichier

• Ajouter un filigrane, un timecode, un générique ou un logo

→ Au préalable, il faut clarifier quelles polices sont installées sur l'ordinateur et connaître le chemin d'accès de la police souhaitée afin de l'utiliser

→ Commande pour vérifier les polices installées
Sur macOS:
> ls /Library/Fonts
Sur Windows:
> dir \Windows\Fonts

Filigrane

- Insérer un filigrane
- https://amiaopensource.github.io/ffmprovisr/#text_watermark

> ffmpeg -i input_file -vf
drawtext="fontfile=font_path:fontsize=font_size:text=wa
termark_text:fontcolor=font_color:alpha=0.4:x=(wtext_w)/2:y=(h-text_h)/2" output_file

→ Exemple: ffmpeg -i input_file -filter:v "drawtext=text='watermark':fontfile='/Library/Fonts/ Arial.ttf':fontsize=35:fontcolor=white:alpha=0.25:x=(wtext_w)/2:y=(h-text_h)/2" output_file

Logo

Insérer un logo

- Le logo doit être disponible en tant que fichier PNG
- Le logo doit être beaucoup plus petit que l'image vidéo

→ ffmpeg -i input_file.mp4 -i logo.png -filter_complex "overlay=10:main h-overlay h-10" with logo.mp4

Timecode

• Insérer un timecode

→ ffmpeg -i input_file -filter:v
drawtext="timecode=starting_timecode:rate=timecode_rate
:fontfile=font_path:fontsize=font_size:fontcolor=font_c
olour:box=1:boxcolor=box_colour:x=(w-text_w)/2:y=h/1.2"
output_file

→ Exemple: ffmpeg -i input_file.mp4 -filter:v
drawtext="timecode='01\:00\:00\:00':rate=25:fontfile='/
Library/Fonts/
Arial.ttf':fontsize=35:fontcolor=white:x=(w-text_w)/
2:y=h/1.2" with_timecode.mp4

65

66

Générique de début ou fin

- Insérer un générique de début ou fin
 - Doit exister en tant que fichier vidéo et avoir les mêmes caractéristiques que le fichier vidéo à traiter

Modifier les propriétés d'un fichier

• Ajouter des sous-titres au format SRT

→ ffmpeg -i output_archive.mkv -filter:v
"subtitles=subtitles.srt" -c:v libx264 -preset
veryslow -crf 18 -pix_fmt yuv420p -c:a aac -ar 48k
-movflags +faststart+write_colr output_streaming.mp4

Input sur le format SRT

- Fichier de sous-titres SubRip
- Le fichier texte contient le texte des sous-titres dans l'ordre correct avec le timecode de début et de fin
- Il existe des outils pour générer des sous-titres. On peut aussi les créer avec un éditeur de texte

Le format SRT :

- Nombre entier consécutif
- Début du timecode --> fin du timecode
- Texte de l'intertitre
- Liane vide
- Exemple :

• 5

- 00:01:28,250 --> 00:01:30,500 • Ceci est un sous-titre
- sur deux lignes

69

Input sur le travail par lots

Berne, le 14 mars 2025

Observations

- Qu'avez-vous testé ?
- Qu'avez-vous observé, appris ?
- Dans quelle mesure les fichiers changent-ils (métadonnées et visuel) ?
- Quelles sont les commandes qui conviennent le mieux à quoi ?

70

Traitement par lots

Possibilités de traitement par lots avec des commandes FFmpeg

- FFCommand Engine
- HandBrake
- Audacity
- ShutterEncoder
- MediaConch (intégrer ffprobe)
- Scripts (Bash, Python etc.)

Traitement par lots

- Exemple d'application d'une commande à plusieurs fichiers
 - La commande doit être exécutée pour tous les fichiers se trouvant dans un dossier
- Exemple de combinaison de commandes
 - Exécuter plusieurs commandes dans un ordre précis sur le même fichier

Workflow pour le traitement par lots

Application d'une commande à plusieurs fichiers

- Préparer un dossier avec plusieurs fichiers de même type
- Quelle commande doit être exécutée ?

Application de plusieurs commandes dans un ordre précis sur un même fichier

74

- Réfléchir au workflow
- Combiner les commandes

73

FFcommand Engine

- Installer FFCommand Engine
- Lien : <u>https://github.com/ColorlabMD/FFCommand_Engine</u>
- Plusieurs commandes FFmpeg peuvent être importées, enregistrées dans des fichiers et exécutées les unes après les autres

Programmes

- Installer HandBrake
 - Lien : <u>https://handbrake.fr/</u>
 - Intégrer les commandes FFmpeg Commands dans HandBrake
- Installer Audacity
 - Lien : <u>https://www.audacityteam.org/download/</u>
 - Intégrer les commandes FFmpeg souhaitées dans Audacity
- ShutterEncoder
 - Lien : <u>https://www.shutterencoder.com/</u>

Observations

• Quels programmes avez-vous testé ?

• Quelles commandes avez-vous combinées ?

Merci pour votre attention !

Feedback

• Que manquait-il ?

77

AV Preservation by reto.ch Ødegård & Bernard Restaurierung

Reto Kromer:

reto.ch / info@reto.ch

Eléonore Bernard et Kamilla Ødegård :

https://atelier40a.ch/odegard-bernard-restaurierung-klg/ eleonore.bernard@atelier40a.ch / kamilla.oedegard@atelier40a.ch 78